
 1

Interium report for C-Explorer
Student: Kang Yunfan

 UID: 3035140603

Date of submission: 2017/11/30

 2

l Abstract

Community search algorithms have been one of the hottest research topics in graph
mining. To facilitate community search algorithms, we proposed C-Explorer. C-
Explorer enables users to formulate community search queries to retrieve and view
communities that they are interested in. The module for comparing the efficiency of
different community search algorithms is also provided. Besides, C-Explorer supports
attributed graphs. Each vertex in attributed graphs is associated with a set of
attributes. C-Explorer can help to look for attributed communities, in which vertices
are cohesive both structurally and semantically. Interfaces are provided for
researchers to plug in different algorithms for testing or visualization. Currently we
have finished building C-Explorer and are working on the extended research problem
of edge-attributed community search. The inspiration of the research topic is gained
from the feature implemented for C-Explorer.

l Acknowledgement

I would like to extend my sincere thanks to those who help me to make the project
possible and better. First, I hope to express my gratitude to my supervisor Dr. Reynold
C.K Cheng. Dr. Cheng and I discussed a lot about the expect features of the project
and helps me to develop a clearer direction. I also wish to say thank you to Dr.
Yixiang Fang, who provided me with the original idea of C-Explorer and the basic
knowledges of community search algorithms. Both of them help me a lot in testing
the program.

 3

l Table of Contents

1. Introduction .. 5

2. Methodology ... 6

2.1 Structure of C-Explorer ... 7

2.2 User Interfaces .. 8

2.2.1 Exploration .. 8

2.2.2 Analysis .. 10

2.3 Dataset and data Structures ... 11

3. Progress and Interim Result .. 12

4. Future research... 14

4.1 Motivation ... 14

4.2 Problem definition .. 16

4.3 Dataset and preprocessing .. 18

4.4 Algorithm .. 18

5. Difficulties Encountered ... 20

6. Conclusion .. 23

7. Reference .. 23

 4

l List of Figures

1 ... 6
2.1 .. 7
2.2 .. 8
2.3 .. 9
2.4 .. 10
3.1 .. 14
3.2 .. 15
3.3 .. 19
4 ... 20

l Abbreviations

ACQ attributed community query
AC attributed community
CMF Community member frequency
CPJ Community pair-wise Jaccard
EACQ Edge-attributed community query

 5

1. Introduction

Social networks are becoming increasingly popular and important in our everyday life

and they generate massive valuable data that draws the attention of researchers. Social

networks can be treated as attributed graphs. Users are modeled as vertices and the

relationship between users is represented by edges. Each vertex has a set of attributes

that are linked with certain properties [1]. Subgraphs whose vertices are cohesively

connected are defined to be communities. Users in a community are usually related to

several other users and can share common attributes or geographically close to each

other. Hence communities are valuable in numerous aspects such as commercial

promotion and social science study. Due to the importance of communities, discovering

communities has attracted much attention and becomes one of the well-studied graph-

mining problems. In the last few years, a query dependent variant of community

detection problem has been raised and it is called attributed community search problem.

It takes a set of query vertices and attributes as input and retrieves communities that

consist of the query vertices and each vertex in the community has the attributes

specified.

Sozio et al. suggest that attributed community search is useful in solving many real-life

problems and three examples that community search can do in different areas are given

in [2]. We hypothesize that having a platform that facilitates formulating community

search query and provides interfaces for community visualization and change of dataset

might help researchers in testing and demonstrating their algorithms and it can also be

easily extended to real applications. As is pointed out in [3], there are systems that

provide user interfaces for users to compose graph queries and run algorithms on

different datasets, such as AutoG[4] and VIIQ[5]. However, these platforms are not

customized for community search algorithms and using general graph queries to

implement community search algorithms is considered unstraightforward in [3].

Therefore, we introduce C-Explorer, a web-based platform that facilitates community

search graph query, result visualization and efficiency comparison between community

 6

retrieval (CR) algorithms. Interfaces for plugging in different algorithms and datasets

are also provided.

In addition to the program, the research problem of edge-attributed community search

will also be explored. In the current attributed community search algorithm, the

attribute sets of vertices are considered when measuring the keyword cohesiveness of

the community. However, Guo et al. pointed out in [7] that edge attributes may contain

more information than vertex attributes. Hence, we will explore the edge-attributed

community search problem in the next step.

The remainder of the report proceeds as follows. First, we offer description of the

structure of the C-Explorer and the UI design. The components in UI design are

discussed in detail and justifications on how they serve the purpose of the project are

given. Then the current progress is presented. The tests we performed on the program

are given with the results commented. We then discuss about the motivation of doing

edge-attributed community search problem and the formal problem definition. Potential

solutions are also proposed. Next, the difficulties encountered will be listed and

described. We also give the current mitigation strategies or possible solutions for each

difficulty. Finally, we close up with a summary and provide inspirations that may lead

to future work.

2. Methodology

The C-Explorer is almost finished except for the standard APIs for other researchers to

plugging in algorithms and datasets. In this section, the structure of the program and

the techniques used will be discussed. Then we discuss the user interface and how it

facilitates community search algorithm queries, community browsing and comparison

of community search algorithms. Finally, we introduce the dataset assumptions and the

data structures of the dataset loaded.

 7

2.1 Structure of C-Explorer

Figure 1 Structure of C-Explorer

C-Explorer adopts a browser-server architecture (see Figure 1.1). The front end is

accessible through URL and it provides users with user interfaces to issue queries and

view the communities and results of comparison returned. The queries issued by users

are sent to the server side. If the query is a community search query, the community

search algorithm embedded will be called to retrieve the communities. In our current

design, the default community search algorithm embedded is the ACQ algorithm. Then

the server sends the communities retrieved to the browser for display. If the query is

issued for comparing the efficiency of different algorithms, algorithms embedded will

be called with the same input specified in the query and the resulting communities and

statistics of each algorithm will be sent to the browser. By default, the algorithms used

for comparison is Global, Local, CODICIL, and ACQ. With the browser-server

architecture, calculations that require large memory space and CPU powers are kept on

the server side. Once the communities are sent to the browser, all other interactions with

the communities are then handled by JavaScript. This separation of logic is expected to

balance the load and reduce the traffic between the client and server.

JSP (JavaServer Pages) framework is used for implementing the C-Explorer. It is one

of the most famous standard technologies for creating dynamically generated web

 8

pages. In addition, JSP uses Java programming language. With the interface feature of

Java language, replacing algorithms and datasets can be done easily and should not

affect other functions.

2.2 User interfaces

On the browser side, user interfaces for issuing community search queries and

comparing different algorithms are provided.

Figure 2.1 Community search user interface

2.2.1 Exploration

The “Exploration” page (see Figure 2.1) is for formulating attributed community search

queries and viewing the communities returned. The left division is for query

formulation and the user interface is designed specifically for community search

queries. Users can type in names in the “Name” text field and click the “+” button on

the right to add a query name. Because the number of vertices in a social network can

be very large, a list of candidate names will show up as the name candidates according

to the input of the text field with the hope that users can find the target name faster.

Once a query name is added, attributes associated with that name is retrieved and the

union of attributes of each query name will be displayed at the bottom. Users can also

 9

type in new keywords and add that to the set of attributes. “Degree” specifies the

minimum degree of each vertex in the communities to be retrieved and it is a parameter

need for k-core related algorithms. After specifying the query names, degree and the

set of attributes, users can click on the “Search” button at the bottom to send the query

to the server. If the “Reset” button is clicked, the query names and attributes will be

deleted to start a new search.

The resulting communities will be displayed in the right division of the page. The

“Theme” section at the top shows the set of attributes that all vertex share and it should

be a subset of the attributes specified by the user in the query. If the result contains more

than one community, users can choose to view different community by clicking on the

community at the bottom. Communities are drawn using Scalable Vector Graphics

(SVG). SVG is XML-based and it integrates with DOM. Compared with Canvas, SVG

is easier to perform vector operations to change the position of elements or interact with

a certain element dynamically. This feature makes the functions for interacting with the

community easy to implement.

Figure 2.2 Exploring a vertex

To facilitate users to better view and interact with the communities, some functions are

provided. When the user clicks on one of the vertices, the profile of that vertex will be

shown (Figure 2.2). If the "Explore" button is clicked, the communities that vertex

belongs to will be retrieved and displayed. Other functions are placed below the

 10

community displayed. Users can perform zoom-in and zoom-out or save or print the

community by clicking on the icons at the right bottom corner. In addition, users can

use arrow keys on the keyboard to move to the part of the community they want after

zoom-in. We hypothesize that “Hide/Show Names” and “Hide/Show edges” are self-

explanatory, but the setting of “Edge importance” might be worth a description.

We define edge importance as an attribute for edges. It represents the closeness of the

two vertices that the edge connects. Its meaning can vary from case to case depending

on the choice of the researchers and the type of the graph. For example, in a community

of game players, edge importance can be defined to be the time two players have played

together. In Figure 2.3, the dataset is retrieved from DBLP and edge importance is

defined to be the number of co-authorship between two researchers. By selecting a

value of edge importance, all edges with a lower edge importance will be hidden. This

feature might help to make the potential relationship in the communities clearer by

further reducing the number of the edges that are less important. Meanwhile, this

feature is independent of the community search algorithm used. One additional file

recording the “Edge importance” between each pair of vertices is needed to make use

this feature but the algorithms need not be modified.

(a) Edge importance = 1 (b) Edge importance = 5

Figure 2.3 After the “Edge importance” is changed from 1 to 5, the edges with
importance < 5 is hidden.

 11

2.2.2 Analysis

The layout of “Analysis” (See Figure 2.4) is similar to that of “Exploration”. Because

some of the community search algorithms do not support more than one query vertex,

only one query name can be inputted. Once the text field loses its focus, the keywords

of the name in the text field will be loaded and users can click on the “Compare” button

after the selection of keywords. Two metrics (CMF and CPJ) are used to evaluate the

overall effectiveness of algorithms. The two metrics are considered effective in

measuring the cohesiveness of a community in [6]. Usually, communities with better

cohesiveness will score higher in these two metrics. The result is put into two charts

and shown in the upper half of the right division. The statistics of each algorithm are

shown in the table under “Community Statistics” for users to check and compare.

2.3 Dataset and Data Structure

We assume that the dataset contains at least the graph structure and methods should be

provided to load the graph into an adjacency list for further process by the algorithm.

The adjacency list is one of the two major ways to represents undirected graphs and it

requires smaller memory space. Although adjacency matrix guarantees better

performance compared with adjacency list, we tend to choose adjacency list because

the graph is of large size and the memory cost for using adjacency matrix is too much.

Figure 2.4 User Interface for “Analysis”

 12

Attribute sets are required for attributed graphs and we assume that the corresponding

data can be loaded into a HashMap. The keys of the HashMap is the ids of the vertices

and the values are the list of attribute set related to that vertex. Using HashMap enables

us to achieve average O(1) time complexity in retrieving the attribute set for a given

vertex. This might be the best performance we can expect.

In addition, to make use of the additional features of edge importance and viewing the

profile of a vertex on right click, the corresponding files and method to load them are

needed. The data recording edge importance is stored in the format of

HashMap<vertexId1, HashMap<vertexId2, edge importance>> so that the time

complexity for retrieving the edge importance for a given edge is O(1). Profiles are

loaded and stored similarly to attributes. But because profiles are not needed by

algorithms and are aimed for providing additional information to users that they might

be interested in, the profiles may not cover every vertex in the graph. Default avatar

and the name of the vertex will be displayed if the profile of the vertex is missing.

3. Progress and Interim Results

The major features of “Exploration” and “Analysis” have been implemented. The

program embedded with ACQ algorithm and DBLP dataset was demoed in VLDB

conference by Dr. Reynold C.K. Cheng. The dataset is retrieved from the XML file

released by DBLP on June 30th, 2017. The attribute set for each vertex is the set of 10

most frequent keywords associated with each author. Before the demonstration, we

prepared the profiles for 220 first authors whose paper is accepted by PVLDB volume

10. We formulate queries for each of these 229 authors with each author being the single

query name and the set of it keywords being the set of attributes to test the system.

There are 12 authors whose community cannot be found by the ACQ algorithm. For

the rest 208 queries, the retrieved communities and the profiles are displayed properly.

The respond time for comparing the four default algorithms with the queries varies and

 13

it can take up to 30 seconds for the result to show up. Though the performance is

unacceptable, it is still within the expectation because running four algorithms and

drawing the communities retrieved by each of them can take a long time. C-Explorer

was then sent to Dr. Reynold Cheng and Dr. Yixiang Fang to test the other features

related to the browsing the communities. Both of them are familiar with the community

search algorithms and the feedbacks from them are positive.

During the demo, the audiences at VLDP commented about the performance and

response time. According to Dr. Cheng, the demo is in general successful except that

retrieving name candidates can take several seconds in some cases. We examined this

and figured out it is caused by the poor performance of the method for doing dynamic

retrieving name candidates. This problem was not identified before because the

computer we used to develop C-Explorer is better than the one used for the demo at the

conference and the response time is acceptable. Because we expect C-Explorer to be a

tool for researchers, it should be able to run smoothly on different devices. Hence the

long response time was considered a serious threat to the user experience. So, we

modified the improved the algorithm and tested the new program with random 100

authors in the DBLP dataset. The current response time for retrieving the list of name

candidates are less than 100ms when it runs on the FYP virtual machine provided by

the CS department. Considering that the performance of the virtual machine is roughly

estimated to be poorer than average laptops, we think the current performance should

be acceptable.

The research on edge-attributed community search has also been started. We carried

out literature review on related topics such as edge-attributed community detection,

attributed community search and multi-layer graph cluster algorithms. The motivation

and problem definition have been developed and the details will be given in the next

section. We will continue to work on the preliminary solutions.

 14

4. Future research

In Section 2.2.1, the feature of Edge importance is presented. Edge importance is

designed to represent the closeness of the relationship represented by the edge.

However, the relationship may not be related to the theme of the community and it

makes less sense to discuss how important the relationship is for the community. In this

section, we first present the potential drawback of the current attributed community

search algorithm ACQ. Then we propose an alternative way to model the social

networks as edge-attributed graphs and give potential solutions on retrieving edge-

attributed communities.

4.1 Motivation

In [1], Fang et al. proposed attributed community query (ACQ). Algorithms are also

given to retrieve attributed community (AC) from an attributed graph. The attributed

graph in ACQ problem is defined to be the graph with vertex attributes. An AC satisfies

two constraints: structure cohesiveness and keyword cohesiveness. Structure

cohesiveness requires that vertices of the AC are closely linked with each other, while

keyword cohesiveness requires that vertices have common attributes. Hence, a

community retrieved by ACQ represents a group of users that interact actively with

each other and all of them share some common interests.

 (a)Vertex-attributed graph (b)Resulting community of query (A, {x})

 15

Figure 3.1 Example of Vertex-attributed graph representation the resulting community

However, it could be the case that the interactions between two users are not associated

with the keywords we specify. Figure 3.1(a) gives a simple example of a vertex-

attributed graph representation of a social network. We may assume that it is an E-mail

network. If two users have a communication about a certain topic, an edge will be drawn

between the vertices representing the two users and the keyword of the topic will be

added to the attribute list of the two vertices. Figure 3.1(b) gives the result of the query

(A, 1, {x}) on the graph constructed. It retrieves the community containing the vertex

A and each vertex in the community has the keyword x. The query also requires that

the degree of each vertex is at least 1. Edge A-C is included in the result because A and

C both have the keyword x and they have communications. However, it is possible that

A only communicates with C on the topic z, but A communicates with D about x and C

usually discusses x with B. In this case, we assume that the edge A-C makes no

contribution to the theme of resulting community because we are interested in the topic

x but A-C reflects the relationship about y.

 (a)Edge-attributed graph (b)Resulting community of query (A, 1, {x})

Figure 3.2 Example of Edge-attributed graph representation the resulting community

Using edge attributes can solve this problem. Figure 3.2(a) models the same email

network as the previous example. In this model, if there is a communication between

two users, one edge is drawn between these two users but the keyword of the letter is

 16

added to the keyword set of the edge. Vertices do not have keyword sets. When running

the query (A, 1, {x}), only edges associated with keyword x will be considered as valid.

The resulting community is shown in Figure 3.2(b). In the resulting community, edge

A-C is not included because it is not associate with {x}, which is the theme of the

community.

Edge attributes also contain more information than vertex attributes. If we assign a

certain attribute to a vertex given that it has an edge with this attribute, the new graph

will satisfy the definition of the attributed graph in ACQ. For example, in Figure 3.2(a),

the attribute sets of the edges of A are {x, y}, {z}, {x} and {y, z}, so the corresponding

attribute set for the vertex A in the vertex-attributed graph is {x, y, z}. The inferred

graph would be the same as Figure 3.1(a). Because the characteristics of users are

actually reflected by the interactions, edge attributes not only contain the information

carried by vertex attributes but also provide information about the relationships.

Therefore, we hypothesized that communities retrieved by community search algorithm

considering edge attributes instead of vertex attributes will still guarantee the structure

cohesiveness and keyword cohesiveness. Meanwhile, the retrieved communities are

associated more closely with the given theme.

4.2 Problem definition:

The graph is assumed to be undirected in most community detection and community

search works. We also examine the undirected graph G(V, E), with vertex set V and

edge set E. Each edge e is associated with a set of attributes denoted by K(e). We denote

the set of attributes of a vertex to be the union of all attribute sets of all edges associated

with that vertex. The set of attributes of a vertex v is denoted by Kv(v). Symbols used

in this paper are listed in the table below:

Symbol Meaning

 17

G(V, E) A graph with vertex set V and edge set E

K(e) The attribute set of edge e

Kv(v) The attribute set of vertex v. Defined as the union of the

attribute sets of all attribute set of the edges associated

with v.

degG(v) The degree of vertex v in G

G[S’] The largest connected subgraph of G s. t. the query
vertex q∈G[S’] and ∀e∈G[S’], S’ ⊆K(e)

Gk[S’] The largest connected subgraph of G s. t. the query
vertex q∈G[S’], ∀e∈G[S’], S’ ⊆K(e) and
∀v∈Gk[S’], degGk[S’](v) ≥ k

The definition of edge-attributed community query (EACQ) is similar to that of ACQ

proposed by Fang et al. in [1]. The only difference is that keyword cohesiveness is

imposed on edge attributes instead of vertex attributes. The formal definition is given

as follow:

Problem 1 (EACQ): Given an undirected graph G(V,E), a positive integer k, a vertex

q ∈ V and a set of keywords S ⊆ W(q), where W(q) is the union of all keyword sets

of edges linked with q, return a set G of graphs, such that ∀Gq ∈ G, the following

properties hold:

• Connectivity. Gq ⊆ G is connected and contains q;

• Structure cohesiveness. ∀v ∈ Gq, degGq (v) ≥k;

• Keyword cohesiveness. The size of L(Gq, S) is maximal, where L(Gq, S) is the set

of keywords shared in S by all edges of Gq.

In the definition given above, we call Gq edge-attributed community (or EAC). By

imposing that L(Gq, S) to be maximal, we wish that EAC(s) retrieved only contain the

 18

most desired edges in terms of the number of shared keywords. Because the different

edge of q can be labeled with different sets of attributes, we may expect to get more

communities with smaller L(Gq, S) compared with ACQ.

4.3 Dataset and preprocessing

A number of datasets are available. The datasets are acquired from large social networks

such as DBLP, Tencent, and Facebook and are widely studied. In addition, the algorithm

for preprocessing the datasets and model them as vertex-attributed graphs is also

present. We can assume that the algorithm can be adapted to generate edge-attributed

graphs.

4.4 Algorithm

In graph theory, a k-core, denoted by Hk, of a graph G is defined to be the largest

subgraph of G with ∀v ∈ Hk, degHk (v) ≥k. The structure cohesiveness is defined

using the definition of k-core in the above problem definition. Therefore, for each

subset S’ of keyword set S, we can first traverse the whole graph and remove edges

that do not contain S’. Then we retrieve the k-core containing the query vertex q as a

candidate community. Finally, the candidate community with largest |S| will be returned.

However, because there are (2k – 1) nonempty subsets of S if |S| = k, the method

becomes impractical when k gets large.

Due to the poor performance of the intuitive approach, special algorithms that can

retrieve edge-attributed communities more efficiently are needed. We now propose two

potential approaches.

The first approach is to attack the EACQ problem by adapting the ACQ solution. In the

solution to ACQ problem, a space-efficient data structure called CL-tree is designed

 19

based on the property of k-core. Algorithms making use of the properties of attribute

sets are presented. The algorithm first makes us of the CL-tree to locate the k-core

containing the query vertex and then efficiently retrieve the optimal community.

Because both ACQ problem and EACQ problem use k-core as the measurement of

structural cohesiveness, the differences reside in be the properties of the attribute sets.

We assume that if the edge-attributed graphs can be proved to have similar prosperities

with the vertex attributed graphs in terms of attribute sets, the EACQ problem can be

solved by adapting the ACQ algorithms.

Figure 3.3 Example of multi-layer graph modeling

The second approach is to use the multi-layer graph clustering algorithms. The edge-

attributed graphs can be naturally converted to multi-layer graphs. By only keeping the

edges that are associated with a certain keyword (or a set of keywords), we obtain one

layer of that keyword. One example is shown in Figure 3.3. Figure 3.3(a) gives the

original edge-attributed graph, which is the same as the example in section 4.1. Figure

3.3(b), (c) and (d) are obtained by keeping the edges associated with keyword x, y, and

z respectively. With the transformation from edge-attributed graph to multi-layer graph,

the edge-attributed community can be found as a cluster of the multi-layer graph.

 20

In addition, modeling the problem as a multi-layer graph may also facilitate further

extension of the edge-attributed community search algorithm. The model we propose

is actually a special case for the multi-layer graph. In multi-layer graph clustering

problems, the layers are usually weighted. Because each layer carries different

information, it is assigned with a weight based on the type of information it carries.

When doing the community search, it is reasonable to allow users to specify which

keyword is most demanding. The weighted nature of multi-layer graph should facilitate

the fulfillment of this feature.

5. Difficulties Encountered

5.1 <datalist> not supported by Safari

As is described in the methodology section, when

the content of the text field under “Name” is

changed, the system will guess the possible names

that the user might want to type in. The candidates

are shown using the HTML5 <datalist> tag (See

Figure 3.1). We tested the system with the four

mainstream browsers. The newest version of

Chrome, Microsoft Edge, Internet Explorer and

Mozilla Firefox support the tag but Safari does not.

Because the list will have some content as long as

there are some names that contain the input string,

the feature of showing name candidates might help

users to find the target name quickly and also get to

know whether a name is acceptable or not before clicking on the “+” button. Hence, we

hypothesize that this feature can enhance the user experience. There might be

substitution technology to achieve the same feature on Safari because search engines

Figure 4 <datalist> is used for

showing the recommended query

name candidates. This is a screen

capture under Chrome.

 21

like Google can achieve similar keyword recommendation features. We will continue

to search for substitutions and see if it can be implemented in the next stage of the

project.

5.2 Unpredictable memory space requirement

In our original design, we planned to enable researchers to upload their dataset to our

server and run algorithms directly on the dataset uploaded. However, we find that this

might not be easy to achieve. Currently, the dataset we use for demonstration is

retrieved from DBLP. To load this dataset, the machine needs to have at least 4GB of

memory. Considering that this dataset is much smaller than some other datasets

retrieved from popular social networks such as Facebook or Tencent, the memory

requirement for loading the dataset uploaded by researchers is difficult to estimate and

it might also be unaffordable to provide a virtual machine to accommodate such a

requirement. Hence, we decide not to implement this feature. Instead, standard

interfaces will be designed for plugging in dataset locally. The program will be made

open source so that interested researchers can download and run the program on a

suitable machine.

5.3 Unacceptable user experience when the community displayed has large

number of vertices

It is highly likely that the communities returned have more than 40 vertices. We observe

that if a community with more than 40 vertices is displayed, the names and avatar of

vertices tend to overlap each other. Furthermore, if there are more than 1000 vertices,

the large number of DOM elements in the SVG causes the change of coordinates for all

elements to take more than 2 seconds to complete. This delay makes zoom-in and

zoom-out almost unusable when the number of vertices is too large. The JUNG library

will also spend longer time to calculate the layout for large communities and users

might feel that the system fails to respond to a certain query. To compensate for the

 22

readability of the communities displayed and the overall performance, we decided to

adopt "2-hop" strategy. If there are more than 40 vertices, the query vertices and their

direct neighbors will be put in the result. Then the 2-hop neighbors (neighbor of

neighbors) will be added until the number of vertices reaches 40 or all the 2-hop

neighbors are added. In this way, we expect to limit the number of vertices in a

community displayed to be lower than 40 while still keeping the most important

vertices in the community with respect to the query vertices.

5.4 Lack of community search algorithm in multi-layer graphs

In section 4.4, we proposed to use multi-layer graph clustering methods to attack the

EACQ problem. However, multi-layer clustering is not query based. Given a multi-

layer graph, the goal of multi-layer clustering is to partition the graph into cohesive

clusters. As a result, multi-layer graph clustering algorithms are widely studied in the

field of community detection. Because community search problems usually model

social networks as simple undirected graphs with no attributes, there is no community

search algorithm on multi-layer graph to the best of our knowledge.

One straightforward way to find the target community for the given vertex is to first

partition the whole graph, then traverse the resulting clusters to find the target

community. However, this procedure is considered unacceptable for community search

applications because the overhead caused by clustering the graph globally is significant.

In order to mitigate the time cost so that the algorithm can run in an on-line manner, a

special algorithm is required to search for the community locally. Although we do not

have the exact solution at the present stage, we think it possible to adapt the existing

communication detection algorithm for multi-layer graphs to an efficient community

search algorithm. Because community search problem is a query-based variant of

community detection problem, a number of community search algorithms are inspired

by community detection algorithms. We will do further literature review in this

direction to explore the possible solutions.

 23

6 Conclusion

We have presented C-Explorer, a web-based platform facilitating community search

algorithms in terms of query formulation, community visualization, and algorithm

comparison.

The basic functions have been implemented and demoed and the response from the

audience is positive in general except for some performance issue. The performance

problem is also solved in the current version. Meanwhile, the interface for researchers

to plugging in algorithms and datasets will be redesigned and implemented. The next

stage of this project will focus more on exploring the edge-attributed community search

problem.

In addition to the edge-attributed community search problem, we hope to provide one

possible research direction. One goal for community search algorithms is to increase

the cohesiveness of the community retrieved. It is common that the number of vertices

retrieved can be large. In most cases, the number of common attributes is less than 3.

This means that for the given query name and attribute set, the vertex in the community

retrieved is “not that common”. To make the community retrieved more cohesive,

introducing additional criteria might be helpful. In the program design, the use of edge

importance is independent of the algorithm used for retrieving communities. However,

it can be observed that by increasing the expected value of edge importance, the size of

the community can be reduced. Since a higher value of edge importance means that the

relationship between two vertices is more active, communities whose edges have higher

edge importance should be considered more cohesive. Hence, it might be worth trying

to consider the edge importance when designing the new community search algorithm.

The new algorithm may be called weighted edge-attributed community search

algorithm if the definition of edge importance is also be related to attributes. For

example, the current edge importance represents the number of cooperation between

two game players or the number of co-authorship between two authors. Though this

 24

value can represent the closeness of the two vertices, it is not related to the theme of

the community retrieved. If edge importance represents how many times two game

players have played a certain game together or the number of co-authorship of papers

in a certain research area between two researchers, it might be intuitive to think that the

vertices with higher edge importance are more likely in the same community with the

corresponding theme.

7 Reference

[1] F. Zhang, Y. Zhang, L. Qin, W. Zhang, X. Lin. When engagement meets similarity:

efficient (k, r)-core computation on social networks. Proceedings of the VLDB

Endowment, 10(10), 998-1009, 2017.

[2] M. Sozio, A. Gionis. The community-search problem and how to plan a successful

cocktail party. Proceedings of the 16th ACM SIGKDD international conference on

Knowledge discovery and data mining. ACM, 2010.

[3] Y. Fang, R. Cheng, S. Luo, J. Hu, K. Huang. C-Explorer: browsing communities in

large graphs. Proceedings of the VLDB Endowment, 10(12), 2017.

[4] P. Yi, B. Choi, S. S. Bhowmick, and J. Xu. Autog: A visual query auto completion

framework for graph databases. PVLDB, 9(13):1505–1508, 2016.  

[5] N. Jayaram, S. Goyal, and C. Li. Viiq: auto-suggestion enabled visual interface for

interactive graph query formulation. PVLDB, 8(12):1940–1943, 2015.  

[6] Y. Fang, R. Cheng, S. Luo, and J. Hu. Effective community search for large

attributed graphs. PVLDB, 9(12):1233–1244, Aug. 2016.

 25

[7] G. Qi, C.C. Aggarwal, and T. Huang, Community detection with edge content in

social media networks. In Data Engineering (ICDE), 2012 IEEE 28th International

Conference on (pp. 534-545). IEEE. April, 2012.

[8] Cui. W., Xiao. Y., Wang. H. and Wang. W., Local search of communities in large
graphs. In Proceedings of the 2014 ACM SIGMOD international conference on
Management of data (pp. 991-1002). ACM. June, 2014.

